

Risk is Risk, Right?

PM Challenge 2007

Joshua Krage NASA Goddard Space Flight Center Greenbelt, MD

Agenda

- Review of risk assessment processes
 - Equations
 - Likelihood
 - Impact
 - Human impact
- Review of risk dialects
 - Management of programs and projects
 - Engineering efforts
 - Security concerns
- Final comparisons and recommendations

What is Risk?

We deal with risk every day

 Each of us has an instinctual understanding of how to discern "day-to-day" risk, and avoid too much of it

• But... do we:

- mean the same thing?
- make the same assessments?
- manage the same risk?

Definition:

(noun)

- 1: a situation involving exposure to danger.
- 2: the possibility that something unpleasant will happen.
- 3: a person or thing causing a risk or regarded in relation to risk (Compact Oxford English Dictionary, www.askoxford.com)

Many Risk Disciplines

- Many disciplines use risk and risk assessment language
 - Psychology (decision theory)
 - Statistics
 - Financial institutions
 - Scenario analysis
- While fascinating, these are (mostly) out of scope for today's discussion

 Today we focus on management, engineering, and security risk

Risk Equations

The various risk disciplines distill a complex process into a easy-to-remember equation, with slight variances in approach and language.

Source	Risk Equation
ISO17666:2003	Likelihood x Severity = Risk
NIST SP800-30	Likelihood x Impact = Risk
NASA NPR8000.4	Likelihood x Consequences = Risk
Probabilistic Risk Assessment	Probability(of Event) x Consequence = Risk
Security Risk	P(threat) x P(vulnerability) x Impact = Risk P(threat) x P(vulnerability) x Cost = Risk
Engineering & Safety Risk	P(accident) x LossesPerAccident = Risk

The commonality in these equations supports thinking of risk assessment as a uniform process.

Picking Apart Likelihood

Likelihood is usually measured in terms of probability

- The probability a particular outcome will be achieved
 - Ex. 98% chance the audience understands this
- Generally considered an objective measurement
- Can be derived mathematically (through proofs) or experientially

Challenges:

- Basic probability assumes all outcomes are equal
 - Ex. Flipping a coin yields either heads or tails
- True probability allows for some uncertainty
 - Ex. It is statistically improbable for the coin to land on its edge; or even not to land
- Requires data from outcomes of similar situations
 - The longer the baseline, the better the data
- Experiential data is generally time-bound
 - Ex. Flood of the century
- If other techniques are not sufficient, then one is left with <u>estimates</u> and <u>judgement</u> calls

Picking Apart Threats & Vulnerabilities

- Some risk assessment techniques (e.g. security) split likelihood into threats and vulnerabilities
 - Vulnerability indicates a weakness in a specific area or function, which if exploited will cause impact
 - Threat indicates the source or actor which can exploit the vulnerability
 - If neither a threat nor a vulnerability exist, then no risk
 - Usually have the most control over vulnerabilities, not threats
- Examples of threats (exploits) and vulnerabilities:
 - Sick birds can infect healthy but non-immunized birds
 - Wind can generate un-dampened oscillations in an overly fluid bridge
 - Continuing resolutions will delay new work in the US Federal Government
 - A cracker will break into a misconfigured database to steal credit card numbers

Picking Apart Impact

Impact has many measuring systems

- Cost is the most common objective measurement
- Many impacts are intangible
 - Ex. Reputation/image, politics, copying intellectual property, etc.
 - These are measured subjectively: mild, moderate, severe, catastrophic
- Typically rated in terms of Confidentiality, Integrity, and Availability

Challenges:

- Accurate cost impact assessments require a sufficient level of cost data
- Intangible impacts depend on a subjective assessment
 - Frequently inconsistent among reviewers
 - Breaches of confidentiality and integrity are typically the most challenging to assess

Exhibit: 5x5 Risk Matrix in Four Areas

Human Factors

The brain does funny things with risk

- Humans have a tendency to subconsciously ignore or downplay the "edge" risks (implicit acceptance)
 - Extreme impact: don't think about it
 - Low impact: not a big deal
 - High likelihood: what can you do?
 - Low likelihood: will never happen
 - Low occurrence rate with low impact: not a big deal
- Subjective assessments allow the brain to insert its bias and can skew results

Mitigations:

- Use objective assessments as a baseline where possible
- Use peer reviews with common definitions to validate results

Reviewing the Bidding

- Many disciplines, but a common terminology
 - Risk = Likelihood x Impact (Threat & Vulnerability)
- Likelihood
 - Typically presented in mathematical probability terms
 - Frequently includes some estimation or judgement call
- Impact
 - Very subjective
 - Varying units of measure
- If not controlled, humans can skew assessments
- Varied results are common, despite common language and approach

Risk Management

- Four classic strategies to handle risk:
 - Accept
 - Do nothing
 - Fliminate
 - Force likelihood (or threat or vulnerability) OR impact to zero
 - Mitigate
 - Do something to limit the likelihood or reduce the impact, but not completely
 - Transfer
 - Assign someone else the acceptance of the risk, usually through insurance
- Risk ignorance is equivalent to implicit risk acceptance

Management Risk

- Project risk focuses primarily on schedule and resources (people, equipment, locations, money)
 - Good project managers consider the other areas as well, but the expectations set for the project manager are based in management risk
 - New issues (nascent risks) are tracked with increasing measurements
 - Lack of change or action is equal to lack of changing risk (controlled variables)
 - Risks tend to be eliminated or accepted, sometimes mitigated, rarely transferred
 - Politics plays a frequent (undocumented) role
- Managerial decisions define the overall project's risk management strategy
 - Drives all other risk areas
 - Can override technical concerns (appropriately)
 - Generally provides the most flexibility to the project

Engineering Risk

Engineering risk has its base in applied technology

- Pushing the envelope of technology is a common goal of engineering risk
- Given enough freedom, engineers can address most challenges successfully
- Engineering is a critical component to mission success -- it cannot be ignored
- Impact is usually that something breaks or progress down a path is stopped
- Extensive materials and methods baselines are available
 - Aggressive testing can help develop or extend the baseline, even into conditions outside of "normal"
 - Partial matches to existing baselines can be extrapolated with low uncertainty
- Not all risks can be mitigated; some have to be accepted
 - Ex. Comet hits deep space probe
- Risks to others (safety) exist, but can usually be quantified
- Risks are frequently mitigated or eliminated, sometimes accepted, and rarely transferred

Security Risk

- Security risks (both physical and information) are generally about people and only sometimes about technology
 - Security protects and enables the project (or it is supposed to, anyway)
 - Security should be considered across the project, but is frequently underutilized
 - Good security staff are creatively paranoid; they expect the unexpected
 - Mitigations or eliminations are almost always possible, given sufficient resources
 - Various points of diminishing returns, and mitigation is rarely 100% guaranteed
 - "New" vulnerabilities are constantly identified
 - Generally already exist; we were just unaware of their existence (risk ignorance)
 - Risk to others is frequently challenging to quantify
 - Ex. Your home computer being used to attack others
 - Many security guides focus on implementing appropriate controls, not measuring or tracking the process output (i.e. tracking how the control is effective)
 - Risks are commonly mitigated, and sometimes accepted, eliminated, or transferred

Adaptive Adversaries

- The <u>single largest difference</u> between security risk and others is the concept of the "intelligent, adaptive adversary"
 - Project management has many things to deal with, but sabotage is not common
 - Engineers plan to overcome natural and incidental human-triggered risks
 - Security staff focus on adversaries and situations where both deliberate and accidental actions are important
 - Adversaries continually adapt and evolve, unlike most natural threats
 - The adversary is the perfect example of an uncontrolled variable
 - It is rare to be able to limit the adversary's threat source
 - The attacking adversary can choose which vulnerability to attack to what degree while the defender must address all possible vulnerabilities
 - Quantifying the adversary is very subjective
 - The types of adversary vary widely

Adversary Pyramid

Final Comparisons

Risk language is consistent, with common approaches

- Various dialects of the same language, with custom terminology and assumptions
- The mechanics are simple to understand, if complex to implement
- Results can be varied across the dialects
- Subjective elements can be hidden by the terminology

Commonalities between dialects exist:

- Management and security risk is mostly about people and communications, and have the most intangibles to assess in impact
- Engineering and security risk have the least control over external variables, and are always identifying previously-unknown latent issues
- Management and engineering risk can depend on long baselines of prior experience

Some uniqueness exists:

- Management risk includes politics
- Engineering risk is the most straight-forward to quantify
- Security risk includes the adaptive adversary

Final Recommendations

- Set the risk management approach and tone early
 - Ensure risk management is utilized throughout the project lifecycle
 - Engage the subject matter experts early and often
 - Identify the risk management approach(es) to be used for each dialect and ensure all staff are familiar with the approach
 - Be aware of the dialect differences in risk discussions
 - Communicate continuously about risk issues across the project; cross-breed awareness between the subject matter teams
 - Identify the subjective elements of the risk assessment and repeatedly re-evaluate
- As with most project problem solutions, communications is a key element to managing risk

Questions?

Any questions?

Contact information:

Joshua KrageJoshua.Krage@nasa.gov

Backup Slides

February 2007 Risk is Risk, Right? 21

Action Learning

- Need three audience volunteers
 - One project manager/engineer
 - Two operatives, not assigned to the project
- Project: Toss
 - Mission success criteria
 - Using the provided components (balls/beanbags), get as many as possible into the target receptacle within the time provided (the schedule)
 - Constraints
 - Resources (staff and components) are limited to those specifically provided
 - Project staff may not approach within the minimum distance indicated until all components have been used
 - Others as indicated
- Operatives receive special instructions individually

References

- ISO17666:2003: Space Systems -- Risk Management http://www.iso.org/ (available for purchase)
- NIST SP800-30: Risk Management Guide for Information Technology Systems http://csrc.nist.gov/publications/nistpubs/800-30/sp800-30.pdf
- NASA NPR8705.5: Probabilistic Risk Assessment (PRA) Procedures for NASA Programs and Projects http://nodis.hq.nasa.gov/ (download site)
- NASA NPR8000.4: Risk Management Procedural Requirements https://nodis.hq.nasa.gov/ (download site)

February 2007 Risk is Risk, Right? 23

Additional Reading

 European Network and Information Security Agency (ENISA): Risk Management: Implementation Principles and Inventories for Risk Management/Risk Assessment Methods and Tools

http://www.enisa.europa.eu/rmra/files/D1_Inventory_of_Methods_Risk_Management_Fina_I.pdf

- Operationally Critical Threat, Asset, and Vulnerability Evaluation (OCTAVE)
 http://www.cert.org/octave/
- Information Security Management Maturity Model (ISM3)
 http://www.ism3.com/
 Process oriented information security management

February 2007 Risk is Risk, Right? 24